If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+96t-96=0
a = -16; b = 96; c = -96;
Δ = b2-4ac
Δ = 962-4·(-16)·(-96)
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-32\sqrt{3}}{2*-16}=\frac{-96-32\sqrt{3}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+32\sqrt{3}}{2*-16}=\frac{-96+32\sqrt{3}}{-32} $
| 2-4(-5x-2)=-10 | | 2m=142 | | 18x-1+23x+17=18 | | A=1.85*x-3771=25000000000 | | 4(c+9)=2 | | 2/18=r/99 | | 22=11+n | | 180/5=x/3 | | 1.8z-10=-4 | | 180/5=x3 | | -1.3x=14.3 | | 3m=(m-5+12) | | f(0)=7(0)-2 | | 21÷x=100 | | 8/4x-6=4-1/2 | | 180/3=x/5 | | x+7=5x–8 | | 119+9x+2=180 | | 6x−15=2x+19 | | 3(c+5)=39 | | 2x+5+4x-8=3x-2 | | 2x+5+3x-2=4x-8 | | −2/3x–214=27/4 | | 12x^2+3x=41 | | (2t+2)/4=3= | | 2^n=36 | | 5n(-)42=12n | | x=-3x²+24x+36 | | x*2x*3x=384 | | (x+2)³=65 | | x=0.5x+(6/x) | | -16x^2+96x-64=0 |